
Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Graph and Logical Implication-Based Patterns in the
Design of a Minesweeper Engine

Haegen Quinston - 135231091

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1haegenquinston@gmail.com 213523109@stei.itb.ac.id

Abstract—Minesweeper, a classic logic-based video game,
challenges players to deduce mine locations on a grid using
numerical clues. Automating Minesweeper gameplay presents a
unique problem-solving domain that blends logical reasoning and
computational efficiency. This paper introduces a novel Minesweeper
engine designed to autonomously solve boards using graph theory
and logical implications as its foundation. The engine identifies
patterns and derives decisions by treating each cell as a node in a
graph, connected by logical dependencies. Advanced techniques,
including propositional logic, rules of inference, and pattern
recognition, allow the engine to replicate human-like reasoning while
handling the inherent uncertainty of Minesweeper's gameplay. The
paper demonstrates the engine's ability to solve grids of varying
complexities, offering insights into automated decision-making
systems.

Keywords—graph theory, logical implication, engine, solve grids

I. INTRODUCTION

Minesweeper, initially introduced with Windows 3.11 in
1990, has captivated players with its blend of logic, strategy, and
unpredictability. The game's core mechanics require players to
deduce the locations of hidden mines using numerical clues that
indicate adjacent mine counts [1]. Despite its simplicity,
Minesweeper presents significant challenges for automation due
to its nondeterministic polynomial (NP) complexity and the
need to make decisions under uncertainty.

This research focuses on the development of an automated

Minesweeper engine capable of solving boards autonomously.
Unlike traditional approaches aimed at optimizing human
efficiency, such as minimizing clicks or maximizing chording
efficiency, this work emphasizes designing a computational
framework for logical deduction and decision-making. The
engine employs graph theory to represent the grid as a network
of logical relationships, where nodes represent cells, and edges
represent adjacency connections. Logical implications and rules
of inference underpin its ability to recognize patterns and deduce
safe moves or mine placements.

This engine systematically identifies basic and advanced

patterns, such as the "1-1" and "1-2" configurations, as well as
complex formations like holes and triangles. These patterns,
derived from the logical dependencies encoded in
Minesweeper's rules, guide the engine's decision-making

process. Furthermore, an educated guessing mechanism is
implemented to address cases where logical deductions are
insufficient, ensuring that the engine can complete games
successfully even under uncertainty.

By integrating principles from graph theory and propositional
logic, this Minesweeper engine serves as a robust framework for
exploring automated reasoning in uncertain environments,
offering potential applications in AI-driven problem-solving
and logical decision systems.

Fig. 1.1 An Expert level game of Minesweeper, the top right icon

showing the time, and the top left icon showing the remainder of mines

II. THEORETICAL FOUNDATIONS

A. Logic

Logic is based on the relationships between sentences or
statements. Only sentences that can be evaluated as either true
or false are considered, and these are referred to as propositions.
A proposition is a statement that has a definite truth value,
meaning it is either true (T) or false (F), but not both. [5]

Propositions can be categorized into several types:
a. Atomic proposition

An atomic proposition is a basic, indivisible statement
that cannot be broken down further. It expresses a single
idea and has a definite truth value, either true or false.
Atomic propositions do not involve any logical
operators, making them the fundamental building blocks
of propositional logic. For example, “It is raining” is an
atomic proposition because it represents a single fact. [5]

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

b. Compound proposition
A compound proposition is formed by combining two

or more atomic propositions using logical connectives
such as AND (∧), OR (∨), and NOT (¬). These
propositions allow for the representation of more
complex logical relationships. For instance, the statement
“It is raining AND I will take an umbrella” combines two
atomic propositions into one compound proposition. [5]

Fig. 2.1 The truth table for conjunction (leftmost table),
disjunction (center table), and negation (rightmost table)
(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

c. Implication

An implication is a specific type of compound
proposition that describes a conditional relationship
between two propositions. It is denoted using the logical
operator IMPLIES (→) and is often expressed as “If p,
then q.” In this context, p is called the antecedent, and q
is called the consequent. For example, the implication “If
it rains, then I will take an umbrella” establishes a cause-
and-effect relationship. The truth value of an implication
depends on the truth values of its components and is
typically true unless the antecedent is true while the
consequent is false. [5]

Fig. 2.2 The truth table for an implication p → q (Source:
Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

d. Arguments & Rules of Inference

An argument in propositional logic is a sequence of
propositions, called premises, followed by a conclusion.
The goal of an argument is to demonstrate that the
conclusion logically follows from the premises. An
argument is considered valid if, whenever all the
premises are true, the conclusion must also be true. [5]

Rules of inference are standardized logical patterns

that ensure the validity of arguments. These rules provide
a framework for deriving conclusions from given
premises. Some common rules of inference include:
1) Modus Ponens: If p → q and p is true, then q must

also be true.
2) Modus Tollens: If p → q and q is false, then p must

also be false.

3) Disjunctive Syllogism: If p ∨ q and ¬ p (not p), then
q must be true.

B. Graph

A graph is defined as a pair of sets G = (V, E) where V is a
set of vertices/nodes, and E is an edge consisting of unordered
pairs of vertices. [6]

Fig. 2.3 (a) simple graph, (b) unsimple graph, (c) pseudo-graph
(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

Graphs can be classified into two types based on the presence

of loops or multiple edges:
a. Simple graph

A simple graph is a graph that does not contain loops or
multiple edges. An example is shown in Fig. 2.3(a).

b. Unsimple graph
An unsimple graph is a graph that contains either loops
or multiple edges. Unsimple graphs can be further
categorized as follows:
1. Multigraph

A multigraph is a graph that contains multiple edges,
which are two or more edges connecting the same
pair of nodes. An example is shown in Fig. 2.3(b).
[6]

2. Pseudograph
A pseudograph is a graph that contains loops, which
are edges that connect a node to itself. An example
is shown in Fig. 2.3(c). [6]

Another way to classify graphs is based on the orientation of

their edges. Using this approach, graphs are divided into two
types:

a. Undirected graph
An undirected graph is a graph in which the edges have

no directional orientation. In such a graph, the order of
the nodes connected by an edge does not matter. For an
edge connecting two nodes u and v in a graph, (u, v) is
equivalent to (v, u). Examples are shown in Fig 2.3. [6]

b. Directed graph
A directed graph is a graph where each edge has a

specific directional orientation. In this type of graph, the
order of the nodes matters. For an edge connecting two
nodes u and v, (u, v) and (v, u) represent distinct edges.
In the case of the edge (u, v), u is called the origin node,
and v is called the terminal node. Examples are shown in
Fig 2.4. [6]

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Fig. 2.4 Examples of directed graphs (Source: Matematika
Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

C. Minesweeper

Minesweeper is a logic-based puzzle game that challenges
players to uncover cells on a grid while avoiding hidden mines.
Each revealed cell displays a number indicating the count of
adjacent mines, or it may be blank if no adjacent mines exist.
The objective is to identify all non-mine cells while employing
logical reasoning to deduce safe cells and mark mine locations.

The complexity of Minesweeper stems from its reliance on
deductive logic and decision-making under uncertainty.
Addressing these challenges necessitates the use of structured
patterns and logical implications as the foundation for
systematic problem-solving. These patterns are derived from the
relationships between numbers and their adjacent unrevealed
cells, providing a logical framework for determining safe moves
and identifying mines. [1]

Minesweeper patterns can be classified into basic and

advanced categories. Basic patterns, such as B1-B2 or 1-1, are
based on direct numerical relationships that enable the deduction
of mine placements or safe cells. These patterns are rooted in
propositional logic, where a clue serves as a premise leading to
definitive conclusions about its neighboring cells. Advanced
patterns, including holes and triangles, involve overlapping
relationships among multiple numbers and their shared
neighbors. These patterns are better conceptualized through
graph theory, where the grid is represented as a network of nodes
(cells) connected by edges (adjacency relationships). By treating
the grid as a graph, solvers can apply rules of inference to
navigate constraints, ensuring consistent and accurate
deductions. [2]

a. Basic Patterns

1) B1-B2 Pattern
When a cell’s number matches the count of its
adjacent unrevealed cells (B1), all those cells must
contain mines. Conversely, if the number matches
the count of adjacent flagged cells (B2), all other
unrevealed neighbors can be safely opened. [2]

Fig. 2.5 A B1 Pattern Fig. 2.6 A B2 Pattern

2) 1-1 and 1-2 Pattern

These patterns extend logical deductions. For
example, in the 1-1 pattern, two adjacent "1" cells
sharing unrevealed neighbors imply one mine in the
shared cells. The 1-2 pattern further explores the
relationship by identifying mine placements and safe
cells beyond the shared neighbors. [2]

Fig 2.7 A 1-1 Pattern Fig. 2.8 A 1-2 Pattern

3) 1-2-1 and 1-2-2-1 Pattern
The 1-2-1 and 1-2-2-1 patterns extend the logic of
the 1-2 pattern, applying it symmetrically from the
left and right sides. [2]

Fig. 2.9 A 1-2-1 Pattern Fig. 2.10 A 1-2-2-1 Pattern

b. Reduction Patterns
Reduction patterns simplify complex arrangements by

conceptually reducing numbers based on flagged cells.
For instance, a "2" surrounded by one flagged cell can be
reduced to "1," facilitating additional deductions. [2]

Fig. 2.11 A 1-2-1 reduction pattern

Fig. 2.12 A 1-2-2-1 reduction pattern

c. Holes & Triangles

1) Holes (H1, H2, H3)
These patterns involve numerical clues forming
"holes" in the grid. Shared cells between adjacent
numbers satisfy mine requirements, allowing other
cells to be safely opened. [4]

Fig 2.13 an H1 Pattern Fig 2.14 An H2 Pattern

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Like the H1 and H2 patterns, on an H3 pattern, the
bottom "1" confirms that the two yellow cells
contain one mine. The top "1" is guaranteed to have
its mine by these same yellow cells. All remaining
cells can be safely opened. [4]

Fig 2.15 An H3 Pattern

2) Triangles (T1, T2, T3)
Similar to holes, triangle patterns involve groups of
cells shared between adjacent numbers. Logical
deductions based on overlaps enable solvers to
safely open additional cells or mark mines. [4]

Fig 2.16 A T1 Pattern Fig 2.17 A T2 Pattern

In the T3 pattern, the "3" touches two mines in the
purple cells. Since the "2" also touches these purple
cells, the green-marked cells can be safely opened.
[4]

Fig 2.18 A T3 Pattern

d. Endgame – Mine counting

In the final stages of a minesweeper
game, mine counting can be
implemented to solve the placement
of the remaining mines and help
identify safe cells. This method
leverages the remaining mine count,
and the grouping of adjacent cells
based on the remaining mines to
ensure accurate deductions. [4]

Fig 2.20 An implementation of mine
counting

These theoretical patterns and logical principles serve as the
foundation for the automated Minesweeper engine, allowing it
to replicate human-like reasoning and efficiently solve the game
while handling uncertainty.

III. IMPLEMENTATION METHOD

A. Minesweeper Module
1) The Grid

The `MinesweeperGrid` class represents the core
structure of the Minesweeper board. It generates the
underlying solution grid, including random mine
placement and adjacency calculation. The grid serves
as a fixed reference throughout the game and is
primarily focused on generating and displaying the
board, with no gameplay or interaction elements.
Mines are represented as "M," while safe cells display
the number of adjacent mines, forming the "answer
key" for Minesweeper gameplay and simulation. By
separating the solution grid from gameplay logic, the
`MinesweeperGrid` ensures clarity and modularity in
the program design.

Fig 3.1 The code for the class MinesweeperGrid

2) The Game

The MinesweeperGame class is a Python
implementation that handles the interactive gameplay
mechanics of Minesweeper. Utilizing the static solution
grid provided by the MinesweeperGrid class, it creates a
dynamic grid where all cells are initially hidden,
represented by the symbol "*". Players interact with this
grid through two primary actions: revealing cells or
flagging suspected mines. When a cell is revealed, the
grid updates to display the number of adjacent mines, an
empty cell (if no adjacent mines exist), or a mine (which
ends the game). Additionally, the class implements safe-
zone propagation for zero-valued cells, ensuring
recursive reveals of neighboring cells. It tracks the game
state, including revealed cells, flagged cells, and win/loss
conditions, making it a comprehensive representation of
Minesweeper gameplay.

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Fig 3.2 The code for Minesweeper Game

3) Moves
The Minesweeper engine automates gameplay using

the methods 𝑟𝑒𝑣𝑒𝑎𝑙_𝑐𝑒𝑙𝑙(𝑠𝑒𝑙𝑓, 𝑥, 𝑦) and
𝑓𝑙𝑎𝑔_𝑐𝑒𝑙𝑙(𝑠𝑒𝑙𝑓, 𝑥, 𝑦). These methods handle the
fundamental operations of revealing a cell or marking it
as a potential mine. Designed for full automation, these
commands operate independently of human interaction
and are integral to the solving logic of the engine. They
enable the simulation of a player's decisions, efficiently
guiding the engine through the game. Each move of the
engine will be printed out on the terminal by order.

4) Simulator
To evaluate the engine's performance, a dedicated

simulator was developed to automate and analyze
multiple gameplay iterations across varying difficulty
levels. The simulator allows the engine to play through a
specified number of Minesweeper games for each
difficulty—beginner, intermediate, and expert—
recording the outcomes and calculating the win rate for
each category.

Fig 3.3 The code for the win-rate simulator.

B. Pattern-Based Algorithm
The foundation of Minesweeper pattern recognition lies in

graph theory and logical implications. Each cell on the
Minesweeper grid can be viewed as a node in a graph, with
edges representing adjacency relationships. Logical
dependencies between nodes (cells) are established through
the numerical clues provided by the game. For instance, a cell
marked "1" implies that exactly one mine exists among its
neighbors. By representing these relationships as a graph, the
engine can systematically analyze connections to deduce safe
moves and mine placements.

Fig 3.4 The main code for the Minesweeper Engine class

The Minesweeper engine's logic is implemented through
pattern recognition algorithms. These algorithms leverage
adjacency rules and logical deduction to identify safe cells or
mines. For instance, the 1-1 pattern uses overlapping
neighbor sets to determine specific moves.

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Fig 3.5 The code for the 1-1 pattern implementation

Outside of the 1-1 pattern implementation, the 1-2 pattern is
also implemented, on the code below:

Fig 3.6 The code for the 1-2 pattern implementation

Several key features of the engine include:
1) Safe Reveals and Mine Flagging

The engine identifies cells that can be safely revealed
or flagged as mines based on numerical clues provided
by adjacent cells. This involves checking the consistency
of flagged cells and unrevealed neighbors against the
number displayed in each cell. This safe revealing
method is the implementation of the basic patterns.

2) Pattern Recognition
The algorithm uses patterns such as "1-1" and "1-2" to

deduce safe moves or mines. For example, in the "1-1"
pattern, if two adjacent cells both indicate "1" and share
a single unrevealed neighbor, that neighbor is flagged as
a mine. Similarly, the "1-2" pattern uses overlapping
neighbor sets to determine mines and safe cells.

3) Hole & Triangle Recognition
Advanced patterns like the hole and triangle are also

implemented within the 1-2 and the 1-1 pattern. By
comparing the unrevealed neighbors of adjacent cells and
their respective numerical requirements, the engine
determines whether specific cells must be flagged or

revealed.
4) Automation and Efficiency

The engine loops through the grid, applying these rules
iteratively until the game is solved or no further progress
can be made. It stops when either a mine is revealed (loss
condition) or all non-mine cells are successfully
uncovered (win condition).

IV. IMPLEMENTATION TESTING AND RESULT

This section presents the testing process for the Minesweeper
engine across three difficulty levels: beginner, intermediate, and
expert. The results of each test are displayed and discussed, with
further evaluation provided in Part B.

A. Unit Testing
1) Beginner Level Test
The first test was conducted on a beginner-level game

featuring a 9x9 grid with 10 mines.

Fig 4.1 The 1st and 2nd stages of the beginner-level test sample

As shown in Figure 4.1, the engine begins with a random

guess for the first move, a necessary step given the lack of initial
information. Subsequently, the engine systematically flags
mines and opens safe cells based on logical deductions,
progressing steadily until the sixth move.

Fig 4.2 Final result of the beginner-level test

By the seventh move, as illustrated in Figure 4.2, the engine

successfully completed the game with a win. The results of this
test were saved to test_results_1.txt.

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Figure 4.3: Saved output of the beginner-level test in the text file

2) Intermediate Level Test
The second test was conducted on an intermediate-level

game, using a 16x16 grid with 40 mines.

Figure 4.4: The engine demonstrating the use of 1-1 and 1-2

patterns during the intermediate-level test

As shown in Figure 4.4, the engine effectively employed

advanced patterns such as 1-1 and 1-2 to identify mines and open
safe cells. This strategic approach enabled the engine to
complete the game successfully.

Figure 4.5: Saved output of the intermediate-level test in the text file

3) Expert Level Test

The third test was conducted on an expert-level game,
featuring a 16x30 grid with 99 mines. Due to the inherent
randomness of the first move, several initial attempts resulted in
failure. However, on one occasion, the engine demonstrated its
capability by successfully completing the game.

Figure 4.6: Saved output of the expert-level test in the text file

B. Win Rate Simulation
To evaluate the engine’s overall performance, its win rate

was assessed across all three difficulty levels using a simulation.
Each difficulty level was simulated 100 times to determine the
engine's success rate. The detailed results of these simulations
are presented below.

Fig 4.7 The engine’s win rate of Beginner games are about 68%

Fig 4.8 The engine’s win rate of Intermediate games are about 40%

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

Fig 4.9 The engine’s win rate of Expert games are about 10%

The analogy of each engine's win rate will be discussed in the
section below.

C. Result Discussion & Analysis

The Minesweeper engine's win rates, which stand at
approximately 68% for beginner-level games, 40% for
intermediate, and 10% for expert, reflect the intrinsic challenges
posed by the game's structure and randomization. The disparity
in success rates can be attributed to the increasing complexity of
logical deductions required and the heightened risk of
unavoidable random guesses as the difficulty level rises.

In beginner games, the smaller grid and fewer mines offer
a relatively higher probability of making accurate deductions
and fewer instances of forced guesses. Intermediate games have
a higher density of mines and a larger grid, increasing the
likelihood of scenarios requiring guesses due to insufficient
clues. Expert-level games further amplify these challenges,
often presenting situations where logical deduction is
insufficient, forcing the engine to rely heavily on probabilistic
guessing.

The random distribution of mines inherently limits the
engine's ability to find a guaranteed solution, as the game's
progression is influenced by the availability and clarity of
numerical hints. This underscores the probabilistic nature of
Minesweeper, where even an advanced logical engine cannot
always overcome the uncertainties of initial moves and late-
game decision-making.

Interestingly, while the engine's win rates may initially

appear modest, a comparison with the author’s personal
Minesweeper statistics offers a compelling perspective on its
performance.

Fig 4.10 The author’s personal Minesweeper win rate

As an experienced Minesweeper player, the author’s win

rates are reflective of substantial skill, particularly on advanced
variations like Evil NG and Hard NG. However, for consistency
in analysis, this comparison focuses on the Beginner,
Intermediate, and Expert difficulty levels. On beginner games,
the author’s win rate of 71.2% narrowly exceeds the engine’s
68%, demonstrating a slight 3% advantage. Conversely, in
intermediate games, the engine achieves a superior win rate of
40% compared to the author’s 37%, indicating its capacity to
handle increased complexity more effectively. In expert games,
the engine also outperforms with a win rate of 10%, surpassing
the author’s 7.5%.

These results underscore the engine’s capability as a
Minesweeper solver, exceeding expectations and proving
competitive even against an experienced human player. The
engine’s success can be attributed to its consistent application of
logical deductions and its immunity to human limitations, such
as cognitive fatigue or biases in probabilistic decision-making.
Moreover, when evaluated against global averages—49.8% for
beginner, 24.1% for intermediate, and 2.8% for expert—the
engine’s performance is particularly noteworthy, significantly
outperforming most players at all levels. This demonstrates the
robustness of the implemented algorithms and highlights their
potential as an effective Minesweeper-solving tool capable of
rivaling both casual and skilled human players.

V. CONCLUSION

The development of a Minesweeper engine utilizing graph
and logical implication-based patterns has proven to be not only
feasible but highly effective, exceeding initial expectations. The
engine employs a recursive approach, systematically analyzing
each cell to determine optimal moves through a progression of
techniques. Starting with basic pattern recognition and flagging,
it advances to more sophisticated strategies such as 1-1 and 1-2
reduction patterns. This systematic methodology has resulted in
win rates of 68%, 40%, and 10% for the Beginner, Intermediate,
and Expert difficulty levels, respectively.

While the development process faced challenges—including

issues like infinite loops and the complexity of implementing
advanced algorithms such as endgame dependency chains—
these obstacles were addressed effectively. The results
demonstrate that the integration of graph theory through the
neighboring system and logical implication in pattern

Makalah IF1220 Matematika Diskrit – Sem. I Tahun 2024/2025

recognition can significantly enhance the engine's ability to
solve Minesweeper puzzles. This project underscores the
potential of computational logic in tackling probabilistic games
and lays the groundwork for further improvements in algorithm
design.

VI. APPENDIX

For those interested in exploring the implementation details
or conducting further experiments, the full codebase is available
on GitHub here. A video explaining this paper and the model
can also be accessed here.

VII. ACKNOWLEDGMENT

The author would like to express the deepest gratitude to the
Lord Almighty for His guidance, wisdom, and blessings
throughout the development of “Graph and Logical Implication-
Based Patterns in the Design of a Minesweeper Engine”. It is
through His grace that challenges were overcome, clarity was
achieved in solving complex problems, and the work was
successfully completed. His presence has been a constant source
of strength and inspiration, enabling perseverance during the
most demanding phases of this endeavor. For this, the author is
profoundly thankful.

The author would also like to extend heartfelt gratitude to all
those who contributed to the preparation of this paper, including:

1. Dr. Rinaldi Munir, M.T., lecturer of the K1 IF1220
Discrete Mathematics course, for his invaluable
guidance and the knowledge imparted during the
lectures,

2. The author’s parents, for their unwavering support,
encouragement, and motivation throughout this
journey, and

3. The author’s friends and peers, for their insightful
feedback and encouragement during the drafting
process of this paper.

Their contributions and support have been instrumental in the
successful completion of this work.

REFERENCES

[1] How-To Geek. “30 Years of Minesweeper: Sudoku with Explosions.”
How-To Geek, https://www.howtogeek.com/693898/30-years-of-
minesweeper-sudoku-with-explosions . Accessed 20 Nov. 2024.

[2] Minesweeper Strategy. "Advanced Patterns." Minesweeper Strategy,
https://minesweepergame.com/strategy/patterns.php . Accessed 20 Nov.
2024.

[3] Trudeau, Richard J. 1994. Introduction to Graph Theory. Dover
Publications.

[4] Minesweeper Online. “Patterns.” Minesweeper Online,
https://minesweeper.online/help/patterns. Accessed 25 Dec 2024.

[5] Munir, Rinaldi. 2024. “Logic”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-
Logika-2024.pdf . Accessed 20 Nov 2024.

[6] Munir, Rinaldi. 2024. “Graf (Bag.1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf . Accessed 20 Nov 2024.

[7] Munir, Rinaldi. 2010. “Matematika Diskrit Edisi 3”. Penerbit Informatika
Bandung.

STATEMENT OF ORIGINALITY

I hereby declare that this paper I have written is my own work,
not an adaptation or translation of someone else's paper, and

not plagiarism.

Bandung, 27th December 2024

Haegen Quinston
13523109

