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Abstract—Minesweeper, a classic logic-based video game, 
challenges players to deduce mine locations on a grid using 
numerical clues. Automating Minesweeper gameplay presents a 
unique problem-solving domain that blends logical reasoning and 
computational efficiency. This paper introduces a novel Minesweeper 
engine designed to autonomously solve boards using graph theory 
and logical implications as its foundation. The engine identifies 
patterns and derives decisions by treating each cell as a node in a 
graph, connected by logical dependencies. Advanced techniques, 
including propositional logic, rules of inference, and pattern 
recognition, allow the engine to replicate human-like reasoning while 
handling the inherent uncertainty of Minesweeper's gameplay. The 
paper demonstrates the engine's ability to solve grids of varying 
complexities, offering insights into automated decision-making 
systems. 
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I.   INTRODUCTION 

Minesweeper, initially introduced with Windows 3.11 in 
1990, has captivated players with its blend of logic, strategy, and 
unpredictability. The game's core mechanics require players to 
deduce the locations of hidden mines using numerical clues that 
indicate adjacent mine counts [1]. Despite its simplicity, 
Minesweeper presents significant challenges for automation due 
to its nondeterministic polynomial (NP) complexity and the 
need to make decisions under uncertainty. 

 
This research focuses on the development of an automated 

Minesweeper engine capable of solving boards autonomously. 
Unlike traditional approaches aimed at optimizing human 
efficiency, such as minimizing clicks or maximizing chording 
efficiency, this work emphasizes designing a computational 
framework for logical deduction and decision-making. The 
engine employs graph theory to represent the grid as a network 
of logical relationships, where nodes represent cells, and edges 
represent adjacency connections. Logical implications and rules 
of inference underpin its ability to recognize patterns and deduce 
safe moves or mine placements. 

 
This engine systematically identifies basic and advanced 

patterns, such as the "1-1" and "1-2" configurations, as well as 
complex formations like holes and triangles. These patterns, 
derived from the logical dependencies encoded in 
Minesweeper's rules, guide the engine's decision-making 

process. Furthermore, an educated guessing mechanism is 
implemented to address cases where logical deductions are 
insufficient, ensuring that the engine can complete games 
successfully even under uncertainty. 

By integrating principles from graph theory and propositional 
logic, this Minesweeper engine serves as a robust framework for 
exploring automated reasoning in uncertain environments, 
offering potential applications in AI-driven problem-solving 
and logical decision systems. 

 

 
Fig. 1.1 An Expert level game of Minesweeper, the top right icon 

showing the time, and the top left icon showing the remainder of mines 
 

II.  THEORETICAL FOUNDATIONS 

A. Logic 

Logic is based on the relationships between sentences or 
statements. Only sentences that can be evaluated as either true 
or false are considered, and these are referred to as propositions. 
A proposition is a statement that has a definite truth value, 
meaning it is either true (T) or false (F), but not both. [5] 

 
Propositions can be categorized into several types: 
a. Atomic proposition 

An atomic proposition is a basic, indivisible statement 
that cannot be broken down further. It expresses a single 
idea and has a definite truth value, either true or false. 
Atomic propositions do not involve any logical 
operators, making them the fundamental building blocks 
of propositional logic. For example, “It is raining” is an 
atomic proposition because it represents a single fact. [5] 
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b. Compound proposition 
A compound proposition is formed by combining two 

or more atomic propositions using logical connectives 
such as AND (∧), OR (∨), and NOT (¬). These 
propositions allow for the representation of more 
complex logical relationships. For instance, the statement 
“It is raining AND I will take an umbrella” combines two 
atomic propositions into one compound proposition. [5] 

 
Fig. 2.1 The truth table for conjunction (leftmost table), 
disjunction (center table), and negation (rightmost table) 
(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir)) 
 

c. Implication 
 

An implication is a specific type of compound 
proposition that describes a conditional relationship 
between two propositions. It is denoted using the logical 
operator IMPLIES (→) and is often expressed as “If p, 
then q.” In this context, p is called the antecedent, and q 
is called the consequent. For example, the implication “If 
it rains, then I will take an umbrella” establishes a cause-
and-effect relationship. The truth value of an implication 
depends on the truth values of its components and is 
typically true unless the antecedent is true while the 
consequent is false. [5] 

 
Fig. 2.2 The truth table for an implication p → q (Source: 
Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir)) 
 

d. Arguments & Rules of Inference 
 

An argument in propositional logic is a sequence of 
propositions, called premises, followed by a conclusion. 
The goal of an argument is to demonstrate that the 
conclusion logically follows from the premises. An 
argument is considered valid if, whenever all the 
premises are true, the conclusion must also be true. [5] 

 
Rules of inference are standardized logical patterns 

that ensure the validity of arguments. These rules provide 
a framework for deriving conclusions from given 
premises. Some common rules of inference include: 
1) Modus Ponens: If p → q and p is true, then q must 

also be true. 
2) Modus Tollens: If p → q and q is false, then p must 

also be false. 

3) Disjunctive Syllogism: If p ∨ q and ¬ p (not p), then 
q must be true. 

B. Graph 

A graph is defined as a pair of sets G = (V, E) where V is a 
set of vertices/nodes, and E is an edge consisting of unordered 
pairs of vertices. [6] 

 
Fig. 2.3 (a) simple graph, (b) unsimple graph, (c) pseudo-graph 
(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir)) 
 
Graphs can be classified into two types based on the presence 

of loops or multiple edges: 
a. Simple graph 

A simple graph is a graph that does not contain loops or 
multiple edges. An example is shown in Fig. 2.3(a). 

b. Unsimple graph 
An unsimple graph is a graph that contains either loops 
or multiple edges. Unsimple graphs can be further 
categorized as follows: 
1. Multigraph 

A multigraph is a graph that contains multiple edges, 
which are two or more edges connecting the same 
pair of nodes. An example is shown in Fig. 2.3(b). 
[6] 

2. Pseudograph 
A pseudograph is a graph that contains loops, which 
are edges that connect a node to itself. An example 
is shown in Fig. 2.3(c). [6] 

 
Another way to classify graphs is based on the orientation of 

their edges. Using this approach, graphs are divided into two 
types: 

a. Undirected graph 
An undirected graph is a graph in which the edges have 

no directional orientation. In such a graph, the order of 
the nodes connected by an edge does not matter. For an 
edge connecting two nodes u and v in a graph, (u, v) is 
equivalent to (v, u). Examples are shown in Fig 2.3. [6] 

b. Directed graph 
A directed graph is a graph where each edge has a 

specific directional orientation. In this type of graph, the 
order of the nodes matters. For an edge connecting two 
nodes u and v, (u, v) and (v, u) represent distinct edges. 
In the case of the edge (u, v), u is called the origin node, 
and v is called the terminal node. Examples are shown in 
Fig 2.4. [6] 
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Fig. 2.4 Examples of directed graphs (Source: Matematika 
Diskrit Edisi 3 2010 (Dr. Rinaldi Munir)) 
 

C. Minesweeper 

Minesweeper is a logic-based puzzle game that challenges 
players to uncover cells on a grid while avoiding hidden mines. 
Each revealed cell displays a number indicating the count of 
adjacent mines, or it may be blank if no adjacent mines exist. 
The objective is to identify all non-mine cells while employing 
logical reasoning to deduce safe cells and mark mine locations. 

The complexity of Minesweeper stems from its reliance on 
deductive logic and decision-making under uncertainty. 
Addressing these challenges necessitates the use of structured 
patterns and logical implications as the foundation for 
systematic problem-solving. These patterns are derived from the 
relationships between numbers and their adjacent unrevealed 
cells, providing a logical framework for determining safe moves 
and identifying mines. [1] 

 
Minesweeper patterns can be classified into basic and 

advanced categories. Basic patterns, such as B1-B2 or 1-1, are 
based on direct numerical relationships that enable the deduction 
of mine placements or safe cells. These patterns are rooted in 
propositional logic, where a clue serves as a premise leading to 
definitive conclusions about its neighboring cells. Advanced 
patterns, including holes and triangles, involve overlapping 
relationships among multiple numbers and their shared 
neighbors. These patterns are better conceptualized through 
graph theory, where the grid is represented as a network of nodes 
(cells) connected by edges (adjacency relationships). By treating 
the grid as a graph, solvers can apply rules of inference to 
navigate constraints, ensuring consistent and accurate 
deductions. [2] 

 
a. Basic Patterns 

1) B1-B2 Pattern 
When a cell’s number matches the count of its 
adjacent unrevealed cells (B1), all those cells must 
contain mines. Conversely, if the number matches 
the count of adjacent flagged cells (B2), all other 
unrevealed neighbors can be safely opened. [2]

  
Fig. 2.5 A B1 Pattern  Fig. 2.6 A B2 Pattern 

 
2) 1-1 and 1-2 Pattern 

These patterns extend logical deductions. For 
example, in the 1-1 pattern, two adjacent "1" cells 
sharing unrevealed neighbors imply one mine in the 
shared cells. The 1-2 pattern further explores the 
relationship by identifying mine placements and safe 
cells beyond the shared neighbors. [2]

  
Fig 2.7 A 1-1 Pattern Fig. 2.8 A 1-2 Pattern 
 

3) 1-2-1 and 1-2-2-1 Pattern 
The 1-2-1 and 1-2-2-1 patterns extend the logic of 
the 1-2 pattern, applying it symmetrically from the 
left and right sides. [2] 

  
Fig. 2.9 A 1-2-1 Pattern Fig. 2.10 A 1-2-2-1 Pattern 
 

b. Reduction Patterns 
Reduction patterns simplify complex arrangements by 

conceptually reducing numbers based on flagged cells. 
For instance, a "2" surrounded by one flagged cell can be 
reduced to "1," facilitating additional deductions. [2]

 
Fig. 2.11 A 1-2-1 reduction pattern 

 
Fig. 2.12 A 1-2-2-1 reduction pattern 

 
c. Holes & Triangles 

1) Holes (H1, H2, H3) 
These patterns involve numerical clues forming 
"holes" in the grid. Shared cells between adjacent 
numbers satisfy mine requirements, allowing other 
cells to be safely opened. [4] 

  
Fig 2.13 an H1 Pattern Fig 2.14 An H2 Pattern 
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Like the H1 and H2 patterns, on an H3 pattern, the 
bottom "1" confirms that the two yellow cells 
contain one mine. The top "1" is guaranteed to have 
its mine by these same yellow cells. All remaining 
cells can be safely opened. [4] 

 
Fig 2.15 An H3 Pattern 
 

2) Triangles (T1, T2, T3) 
Similar to holes, triangle patterns involve groups of 
cells shared between adjacent numbers. Logical 
deductions based on overlaps enable solvers to 
safely open additional cells or mark mines. [4]

  
Fig 2.16 A T1 Pattern Fig 2.17 A T2 Pattern 
 
In the T3 pattern, the "3" touches two mines in the 
purple cells. Since the "2" also touches these purple 
cells, the green-marked cells can be safely opened. 
[4] 

 
Fig 2.18 A T3 Pattern 

 
d. Endgame – Mine counting 

In the final stages of a minesweeper 
game, mine counting can be 
implemented to solve the placement 
of the remaining mines and help 
identify safe cells. This method 
leverages the remaining mine count, 
and the grouping of adjacent cells 
based on the remaining mines to 
ensure accurate deductions. [4] 

 
Fig 2.20 An implementation of mine 
counting 
 

 
 

These theoretical patterns and logical principles serve as the 
foundation for the automated Minesweeper engine, allowing it 
to replicate human-like reasoning and efficiently solve the game 
while handling uncertainty. 

 
III.   IMPLEMENTATION METHOD 

A. Minesweeper Module 
1) The Grid 

The `MinesweeperGrid` class represents the core 
structure of the Minesweeper board. It generates the 
underlying solution grid, including random mine 
placement and adjacency calculation. The grid serves 
as a fixed reference throughout the game and is 
primarily focused on generating and displaying the 
board, with no gameplay or interaction elements. 
Mines are represented as "M," while safe cells display 
the number of adjacent mines, forming the "answer 
key" for Minesweeper gameplay and simulation. By 
separating the solution grid from gameplay logic, the 
`MinesweeperGrid` ensures clarity and modularity in 
the program design. 

 

 
Fig 3.1 The code for the class MinesweeperGrid 

 
2) The Game 

The MinesweeperGame class is a Python 
implementation that handles the interactive gameplay 
mechanics of Minesweeper. Utilizing the static solution 
grid provided by the MinesweeperGrid class, it creates a 
dynamic grid where all cells are initially hidden, 
represented by the symbol "*". Players interact with this 
grid through two primary actions: revealing cells or 
flagging suspected mines. When a cell is revealed, the 
grid updates to display the number of adjacent mines, an 
empty cell (if no adjacent mines exist), or a mine (which 
ends the game). Additionally, the class implements safe-
zone propagation for zero-valued cells, ensuring 
recursive reveals of neighboring cells. It tracks the game 
state, including revealed cells, flagged cells, and win/loss 
conditions, making it a comprehensive representation of 
Minesweeper gameplay. 
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Fig 3.2 The code for Minesweeper Game 

3) Moves 
The Minesweeper engine automates gameplay using 

the methods 𝑟𝑒𝑣𝑒𝑎𝑙_𝑐𝑒𝑙𝑙(𝑠𝑒𝑙𝑓, 𝑥, 𝑦) and 
𝑓𝑙𝑎𝑔_𝑐𝑒𝑙𝑙(𝑠𝑒𝑙𝑓, 𝑥, 𝑦). These methods handle the 
fundamental operations of revealing a cell or marking it 
as a potential mine. Designed for full automation, these 
commands operate independently of human interaction 
and are integral to the solving logic of the engine. They 
enable the simulation of a player's decisions, efficiently 
guiding the engine through the game. Each move of the 
engine will be printed out on the terminal by order. 

4) Simulator 
To evaluate the engine's performance, a dedicated 

simulator was developed to automate and analyze 
multiple gameplay iterations across varying difficulty 
levels. The simulator allows the engine to play through a 
specified number of Minesweeper games for each 
difficulty—beginner, intermediate, and expert—
recording the outcomes and calculating the win rate for 
each category. 

 
Fig 3.3 The code for the win-rate simulator. 
 

B. Pattern-Based Algorithm 
The foundation of Minesweeper pattern recognition lies in 

graph theory and logical implications. Each cell on the 
Minesweeper grid can be viewed as a node in a graph, with 
edges representing adjacency relationships. Logical 
dependencies between nodes (cells) are established through 
the numerical clues provided by the game. For instance, a cell 
marked "1" implies that exactly one mine exists among its 
neighbors. By representing these relationships as a graph, the 
engine can systematically analyze connections to deduce safe 
moves and mine placements. 

 

 
Fig 3.4 The main code for the Minesweeper Engine class 

 
The Minesweeper engine's logic is implemented through 
pattern recognition algorithms. These algorithms leverage 
adjacency rules and logical deduction to identify safe cells or 
mines. For instance, the 1-1 pattern uses overlapping 
neighbor sets to determine specific moves.  
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Fig 3.5 The code for the 1-1 pattern implementation 
 
Outside of the 1-1 pattern implementation, the 1-2 pattern is 
also implemented, on the code below: 
 

 
Fig 3.6 The code for the 1-2 pattern implementation 
 
Several key features of the engine include: 
1) Safe Reveals and Mine Flagging 

The engine identifies cells that can be safely revealed 
or flagged as mines based on numerical clues provided 
by adjacent cells. This involves checking the consistency 
of flagged cells and unrevealed neighbors against the 
number displayed in each cell. This safe revealing 
method is the implementation of the basic patterns. 

2) Pattern Recognition 
The algorithm uses patterns such as "1-1" and "1-2" to 

deduce safe moves or mines. For example, in the "1-1" 
pattern, if two adjacent cells both indicate "1" and share 
a single unrevealed neighbor, that neighbor is flagged as 
a mine. Similarly, the "1-2" pattern uses overlapping 
neighbor sets to determine mines and safe cells. 

3) Hole & Triangle Recognition 
Advanced patterns like the hole and triangle are also 

implemented within the 1-2 and the 1-1 pattern. By 
comparing the unrevealed neighbors of adjacent cells and 
their respective numerical requirements, the engine 
determines whether specific cells must be flagged or 

revealed. 
4) Automation and Efficiency 

The engine loops through the grid, applying these rules 
iteratively until the game is solved or no further progress 
can be made. It stops when either a mine is revealed (loss 
condition) or all non-mine cells are successfully 
uncovered (win condition). 

 
IV.   IMPLEMENTATION TESTING AND RESULT 

This section presents the testing process for the Minesweeper 
engine across three difficulty levels: beginner, intermediate, and 
expert. The results of each test are displayed and discussed, with 
further evaluation provided in Part B. 

 
A. Unit Testing 
1) Beginner Level Test 
The first test was conducted on a beginner-level game 

featuring a 9x9 grid with 10 mines. 
 

  
Fig 4.1 The 1st and 2nd stages of the beginner-level test sample 
 
As shown in Figure 4.1, the engine begins with a random 

guess for the first move, a necessary step given the lack of initial 
information. Subsequently, the engine systematically flags 
mines and opens safe cells based on logical deductions, 
progressing steadily until the sixth move. 

 

 
Fig 4.2 Final result of the beginner-level test 
 
By the seventh move, as illustrated in Figure 4.2, the engine 

successfully completed the game with a win. The results of this 
test were saved to test_results_1.txt. 
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Figure 4.3: Saved output of the beginner-level test in the text file 
 

2) Intermediate Level Test 
The second test was conducted on an intermediate-level 

game, using a 16x16 grid with 40 mines. 
 

 
Figure 4.4: The engine demonstrating the use of 1-1 and 1-2 

patterns during the intermediate-level test 
 
As shown in Figure 4.4, the engine effectively employed 

advanced patterns such as 1-1 and 1-2 to identify mines and open 
safe cells. This strategic approach enabled the engine to 
complete the game successfully. 

 

 
Figure 4.5: Saved output of the intermediate-level test in the text file 

 
3) Expert Level Test 

The third test was conducted on an expert-level game, 
featuring a 16x30 grid with 99 mines. Due to the inherent 
randomness of the first move, several initial attempts resulted in 
failure. However, on one occasion, the engine demonstrated its 
capability by successfully completing the game. 

 

 
Figure 4.6: Saved output of the expert-level test in the text file 
 

B. Win Rate Simulation 
To evaluate the engine’s overall performance, its win rate 

was assessed across all three difficulty levels using a simulation. 
Each difficulty level was simulated 100 times to determine the 
engine's success rate. The detailed results of these simulations 
are presented below. 

 

 
Fig 4.7 The engine’s win rate of Beginner games are about 68% 
 

 
Fig 4.8 The engine’s win rate of Intermediate games are about 40% 
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Fig 4.9 The engine’s win rate of Expert games are about 10% 

 
The analogy of each engine's win rate will be discussed in the 
section below. 
 
C. Result Discussion & Analysis 

The Minesweeper engine's win rates, which stand at 
approximately 68% for beginner-level games, 40% for 
intermediate, and 10% for expert, reflect the intrinsic challenges 
posed by the game's structure and randomization. The disparity 
in success rates can be attributed to the increasing complexity of 
logical deductions required and the heightened risk of 
unavoidable random guesses as the difficulty level rises. 

In beginner games, the smaller grid and fewer mines offer 
a relatively higher probability of making accurate deductions 
and fewer instances of forced guesses. Intermediate games have 
a higher density of mines and a larger grid, increasing the 
likelihood of scenarios requiring guesses due to insufficient 
clues. Expert-level games further amplify these challenges, 
often presenting situations where logical deduction is 
insufficient, forcing the engine to rely heavily on probabilistic 
guessing.  

The random distribution of mines inherently limits the 
engine's ability to find a guaranteed solution, as the game's 
progression is influenced by the availability and clarity of 
numerical hints. This underscores the probabilistic nature of 
Minesweeper, where even an advanced logical engine cannot 
always overcome the uncertainties of initial moves and late-
game decision-making. 

 
Interestingly, while the engine's win rates may initially 

appear modest, a comparison with the author’s personal 
Minesweeper statistics offers a compelling perspective on its 
performance. 

 

 
Fig 4.10 The author’s personal Minesweeper win rate 

 
As an experienced Minesweeper player, the author’s win 

rates are reflective of substantial skill, particularly on advanced 
variations like Evil NG and Hard NG. However, for consistency 
in analysis, this comparison focuses on the Beginner, 
Intermediate, and Expert difficulty levels. On beginner games, 
the author’s win rate of 71.2% narrowly exceeds the engine’s 
68%, demonstrating a slight 3% advantage. Conversely, in 
intermediate games, the engine achieves a superior win rate of 
40% compared to the author’s 37%, indicating its capacity to 
handle increased complexity more effectively. In expert games, 
the engine also outperforms with a win rate of 10%, surpassing 
the author’s 7.5%. 

These results underscore the engine’s capability as a 
Minesweeper solver, exceeding expectations and proving 
competitive even against an experienced human player. The 
engine’s success can be attributed to its consistent application of 
logical deductions and its immunity to human limitations, such 
as cognitive fatigue or biases in probabilistic decision-making. 
Moreover, when evaluated against global averages—49.8% for 
beginner, 24.1% for intermediate, and 2.8% for expert—the 
engine’s performance is particularly noteworthy, significantly 
outperforming most players at all levels. This demonstrates the 
robustness of the implemented algorithms and highlights their 
potential as an effective Minesweeper-solving tool capable of 
rivaling both casual and skilled human players. 
 

V.   CONCLUSION 

The development of a Minesweeper engine utilizing graph 
and logical implication-based patterns has proven to be not only 
feasible but highly effective, exceeding initial expectations. The 
engine employs a recursive approach, systematically analyzing 
each cell to determine optimal moves through a progression of 
techniques. Starting with basic pattern recognition and flagging, 
it advances to more sophisticated strategies such as 1-1 and 1-2 
reduction patterns. This systematic methodology has resulted in 
win rates of 68%, 40%, and 10% for the Beginner, Intermediate, 
and Expert difficulty levels, respectively. 

 
While the development process faced challenges—including 

issues like infinite loops and the complexity of implementing 
advanced algorithms such as endgame dependency chains—
these obstacles were addressed effectively. The results 
demonstrate that the integration of graph theory through the 
neighboring system and logical implication in pattern 
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recognition can significantly enhance the engine's ability to 
solve Minesweeper puzzles. This project underscores the 
potential of computational logic in tackling probabilistic games 
and lays the groundwork for further improvements in algorithm 
design. 

VI.   APPENDIX 

For those interested in exploring the implementation details 
or conducting further experiments, the full codebase is available 
on GitHub here. A video explaining this paper and the model 
can also be accessed here. 
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